A Class of Expansions of G-functions and the Laplace Transform

By Arun Verma

1. Introduction. Several general expansions involving G-functions were given in a series of papers by Meijer [4]. Recently, Wimp and Luke [6] obtained some expansions involving G-functions which were more general than the results of Meijer. These results were obtained by generalising certain known results of Field and Wimp [3]. The object of this paper is to use the Laplace transform and its inverse to derive certain types of expansions involving G-functions. The advantage of this method, in the present context, is to show how the expansions involving G-functions follow as obvious and natural consequences of similar expansions for the generalised hypergeometric functions.*

In §3 an expansion involving G-function has been proved by using a generalisation of a result due to Niblett [5] deduced in §2. The expansion is incidentally a generalisation of some of the expansions given by Wimp and Luke, \dagger and contains as special cases many of the expansion theorems of Meijer [4].
2. In the first instance we shall prove the following generalisation of a result due to Niblett [5].

$$
\begin{align*}
&{ }_{p+s} F_{q}\left[\begin{array}{c}
\left(a_{p}\right),\left(b_{s}\right) ; x w \\
\left(c_{q}\right)
\end{array}\right]= h \sum_{n=0}^{\infty} \frac{[h-n \alpha+1]_{n-1}\left[\left(b_{s}\right)\right]_{n}\left[\left(e_{u}\right)\right]_{n}(-x)^{n}}{n!\left[\left(c_{q}\right)\right]_{n}} \\
& \times{ }_{p+2} F_{u+2}\left[\begin{array}{c}
\left(a_{p}\right), 1+h(1-\alpha)^{-1},-n ; w \\
\left(e_{u}\right), h(1-\alpha)^{-1}, h-n \alpha+1
\end{array}\right] \tag{1}\\
& \times{ }_{s+u+1} F_{q}\left[\begin{array}{c}
\left.\left(b_{s}\right)+n,\left(e_{u}\right)+n, h+n(1-\alpha) ; x\right] \\
\left(c_{q}\right)+n
\end{array}\right.
\end{align*}
$$

provided $p+s \leqq q$, or $p+s=1+q$, and $|x w|<1, s+u+1 \leqq q$, or $s+$ $u=q$ and $|x|<1$, and the series of the hypergeometric functions on the right hand is absolutely convergent. To prove (2.1) we use a simple extension of the method used earlier by Chaundy [1] for proving a similar result.

Comparing the coefficient of $\left[\left(a_{p}\right)\right]_{N} w^{N} / N$! on both the sides of (2.1), we get

$$
\begin{aligned}
& \frac{\left[\left(b_{s}\right)\right]_{N} x^{N}}{\left[\left(c_{q}\right)\right]_{N}}=\{h+N(1-\alpha)\} \sum_{n=N}^{\infty} \frac{[h-n \alpha+1]_{n-1}\left[\left(b_{s}\right)\right]_{n}\left[\left(e_{u}\right)\right]_{n}(-x)^{n}}{n!\left[\left(c_{q}\right)\right]_{n}} \\
& \times \frac{[-n]_{N}}{[h-n \alpha+1]_{N}}{ }^{s+u+1} F_{q}\left[\left(b_{s}\right)+n,\left(e_{u}\right)+n, h+n(1-\alpha) ; x\right] \\
&\left(c_{q}\right)+n
\end{aligned}
$$

Writing $n=N+r$, we find that this reduces to

$$
\begin{array}{r}
1=\{h+N(1-\alpha)\} \sum_{r=0}^{\infty} \frac{[h+N(1-\alpha)+1-\alpha]_{r-1}\left[\left(b_{s}\right)+N\right]_{r}\left[\left(e_{u}\right)+N\right]_{r}(-x)^{r}}{r!\left[\left(c_{q}\right)+N\right]_{r}} \\
\times{ }_{s_{s+u+1} F_{q}}\left[\begin{array}{c}
\left.\left(b_{s}\right)+N+r,\left(e_{u}\right)+N+r, h+(1-\alpha)(N+r) ; x\right] \\
\left(c_{q}\right)+N+r
\end{array}\right.
\end{array}
$$

Received December 31, 1964.

* For the notation and the properties of G-functions see Erdelyi [2].
\dagger I am grateful to Mr. Y. L. Luke and the referee for suggesting certain improvements in the original version of this paper.

The term independent of x on the right hand side is seen to be unity. It thus remains to show that the coefficient of any positive power of x vanishes on the right, i.e., when $M>0$,

$$
\frac{\left[\left(b_{s}\right)+N\right]_{M}\left[\left(e_{u}\right)+N\right]_{M}}{\left[\left(c_{q}\right)+N\right]_{M}} \sum_{r=0}^{M} \frac{(-)^{r}[h+N(1-\alpha)+1-r \alpha]_{M-1}}{r![M-r]!}=0
$$

This, however, is the coefficient of x^{M-1} in

$$
\frac{\left[\left(b_{s}\right)+N\right]_{M}\left[\left(e_{u}\right)+N\right]_{M}}{M\left[\left(c_{q}\right)+N\right]_{M}}(1-x)^{-h-N(1-\alpha)-1}\left[1-(1-x)^{\alpha}\right]^{M}
$$

in which the lowest term is x^{M}. This completes the formal proof of (2.1). The rearrangement of the infinite series is justified due to absolute convergence.

This result reduces to one proved by Niblett [5] for $w=1$ and $u=q$. And for $\alpha=0$, this gives us a result due to Meijer [4] on assuming $u=q,\left(e_{u}\right)=\left(c_{q}\right)$ and after suitable adjustments of the parameters.
3. Next, we generalise (2.1) for the G-functions in the following form:

$$
\begin{align*}
& \begin{array}{c}
G_{1+l+q_{1}+w, h+s+m}^{h+s+t, 1+v}\left(x w \left\lvert\, \begin{array}{c}
1,\left(k_{l}\right),\left(c_{q}\right),\left(\delta_{W}\right) \\
\left(a_{p}\right),\left(b_{s}\right),\left(g_{m}\right)
\end{array}\right.\right) \\
=h \Gamma\left[\left(a_{p}\right) ;\left(e_{u}\right),\left(\delta_{W}\right)\right] \sum_{n=0}^{\infty} \frac{1}{n!\Gamma[1-\alpha n+h]} \\
\\
\quad \times{ }_{p+2} F_{W+u+2}^{\prime}\left[\begin{array}{c}
\left(a_{p}\right), 1+h(1-\alpha)^{-1},-n ; 1 / w \\
\left(\delta_{W}\right),\left(e_{u}\right), h(1-\alpha)^{-1}, h-n \alpha+1
\end{array}\right] \\
\\
\quad \times G_{1+l+q, 1+s+u+m}^{1+s++t, 1+v}\left(x \left\lvert\, \begin{array}{c}
1-n,\left(k_{l}\right),\left(c_{q}\right) \\
\left(b_{s}\right),\left(e_{u}\right), h-\alpha n,\left(g_{m}\right)
\end{array}\right.\right)
\end{array}
\end{align*}
$$

provided

$$
\begin{aligned}
& v \leqq l, t \leqq m, l+m+q+W<1+h+s+2 t+2 v,|\arg x w|< \\
& \frac{1}{2} \pi(1+h+s+2 t+2 v-l-m-q-W), t+v<2+2 l+ \\
& 2 m+2 q+s+u,|\arg x|<\frac{1}{2} \pi(2+2 l+2 m+2 q+s+u-t-v)
\end{aligned}
$$

and the series on the right hand side has a meaning.
We prove (3.1) by mathematical induction. We suppose that (3.1) is true for some fixed values of l, m, p, q, s, t, u, v and W. To effect the induction with respect to v multiply both sides by $z^{-f_{v}+1}$, replace x by $x z$ and take the Laplace transform with respect to z on both the sides. Then using the known result

$$
\int_{0}^{\infty} e^{-y} y^{-\alpha} G_{p, q}^{m, n}\left(x y \left\lvert\, \begin{array}{c}
\left(a_{p}\right) \tag{2}\\
\left(b_{q}\right)
\end{array}\right.\right) d y=G_{p+1, q}^{m, n+1}\binom{\alpha,\left(a_{p}\right)}{\left(b_{q}\right)}
$$

provided
(i) $p+q<2(m+n),|\arg x|<\pi\left(m+n-\frac{1}{2} p-\frac{1}{2} q\right)$,
(ii) $R l \alpha<R l b_{h}+1, h=1,2, \cdots, m$;
on both the sides, we get a relation in which v has been replaced by $v+1$.
Further, to effect the induction with respect to m multiply both sides by $z^{a_{m+1}^{-1}}$,
replace x by x / z and take the inverse Laplace transform with respect to z on both the sides. Then using the known result

$$
\frac{1}{2 \pi i} \int_{c} e^{t} t^{\alpha-1} G_{p, q}^{m, n}\left(\begin{array}{c}
x \tag{3}\\
t
\end{array} \begin{array}{c}
\left(a_{p}\right) \\
\left(b_{q}\right)
\end{array}\right) d t=G_{p, q+1}^{m, n}\left(x \left\lvert\, \begin{array}{c}
\left(a_{p}\right) \\
\left(b_{q}\right), \alpha
\end{array}\right.\right),
$$

provided $R l \alpha>0$, and the conditions ($3.2-\mathrm{i}$) and (3.2-ii) hold; on both the sides, we get a relation in which m has been replaced by $m+1$.

Similarly, the induction with respect to l, N, p, q, s, t, u and W can be effected. Since, for $l=m=t=v=W=0$, (3.1) reduces to the relation (2.1), the result is established completely.*

Next, using first the relation [2; 5.3.1 (9)]

$$
G_{p, q}^{m, n}\left(x \left\lvert\, \begin{array}{l}
\left(a_{p}\right) \\
\left(b_{q}\right)
\end{array}\right.\right)=G_{q, p}^{n, m}\left(x^{-1} \left\lvert\, \begin{array}{l}
1-\left(b_{q}\right) \\
1-\left(a_{p}\right)
\end{array}\right.\right),
$$

and then

$$
G_{p+1, q+1}^{m+1, k}\left(x \left\lvert\, \begin{array}{c}
\left(a_{p}\right), 1-n \\
1,\left(b_{q}\right)
\end{array}\right.\right)=(-)^{n} G_{p+1, q+1}^{m, k+1}\binom{1-n,\left(a_{p}\right)}{\left(b_{q}\right), 1},
$$

which is apparent from the definition of the G-function, on both the sides of (3.1) one can get an expansion of $G(\lambda x)$ in a series of the products of $G(x)$ and $F(\lambda)$.

It is worth noting that by taking $\alpha=0, g_{m}=1, a_{p}=h, c_{q}=h$, we get a result which is essentially the sixth theorem of Wimp and Luke [6], which in its turn contains as a particular case Theorem 6 of Meijer [4].

One can easily extend a result due to Carlitz and Alsalam [7] to G-functions by using the above technique.

Added in proof. In (3.1) taking $a_{1}=t$ and then letting $t \rightarrow 0$, we get the sum of an infinite series of G-functions in terms of products of gamma functions, a result which also generalises the known formula due to MacRobert and Ragab [Math. Z., v. 78, 1962] and is perhaps a solitary example of its type for the G-functions.

Department of Mathematics,

The University, Gorakhpur, India.

1. T. W. Chaundy, "Some hypergeometric identities", J. London Math. Soc. v. 26, 1951, pp. 42-44. MR 12, 410.
2. A. Erdelyi et al., Higher Transcendental Functions, Vol. I, McGraw-Hill, New York, 1953. MR 15, 419.
3. J. L. Fields \& Jet Wimp, "Expansions of hypergeometric functions in hypergeometric functions," Math. Comp. v. 15, 1961, pp. 390-395. MR 23 * A3289.
4. C. S. Meijer, "Expansion theorems for G-functions I-XI,"' Indag. Math., v. 14-18, 19521956, pp. $369-379$; 483-487; 43-49; 187-193; 349-357; 77-82; 83-91; 273-279; 243-251; 309-314; 70-82. MR 14, 469; MR 14, 642; MR 14, 748; MR 15, 422; MR 15, 791 ; MR 15, 955; MR 16, 1106 ; MR 17, 846.
5. J. D. Niblett, "Some hypergeometric identities," Pacific J. Math., v. 2, 1952, pp. 219225. MR 13, 940.
6. Jet Wimp \& Y. L. Luke, "Expansion formulas for generalised hypergeometric functions," Rend. Circ. Mat. Palermo. (2) v. 12, 1962, pp. 351-366.
7. L. Carlitz \& W. A. Alsalam, 'Some functions associated with the Bessel functions," J. Mach. Math., v. 12, 1963, pp. 911-933.
[^0]
[^0]: * The conditions on the parameters arise due to the particular method followed and can be waived off by analytic continuation.

